Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 37
1.
Front Endocrinol (Lausanne) ; 15: 1347802, 2024.
Article En | MEDLINE | ID: mdl-38516412

Over the last decades, thyroid hormones (THs) signaling has been established as a key signaling cue for the proper maintenance of brain functions in adult mammals, including humans. One of the most fascinating roles of THs in the mature mammalian brain is their ability to regulate adult neurogliogenic processes. In this respect, THs control the generation of new neuronal and glial progenitors from neural stem cells (NSCs) as well as their final differentiation and maturation programs. In this review, we summarize current knowledge on the cellular organization of adult rodent neurogliogenic niches encompassing well-established niches in the subventricular zone (SVZ) lining the lateral ventricles, the hippocampal subgranular zone (SGZ), and the hypothalamus, but also less characterized niches in the striatum and the cerebral cortex. We then discuss critical questions regarding how THs availability is regulated in the respective niches in rodents and larger mammals as well as how modulating THs availability in those niches interferes with lineage decision and progression at the molecular, cellular, and functional levels. Based on those alterations, we explore the novel therapeutic avenues aiming at harnessing THs regulatory influences on neurogliogenic output to stimulate repair processes by influencing the generation of either new neurons (i.e. Alzheimer's, Parkinson's diseases), oligodendrocytes (multiple sclerosis) or both (stroke). Finally, we point out future challenges, which will shape research in this exciting field in the upcoming years.


Brain , Neurogenesis , Humans , Adult , Animals , Neurogenesis/physiology , Brain/physiology , Neurons/physiology , Thyroid Hormones/physiology , Mammals
2.
Eur Thyroid J ; 13(2)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38417253

Thyroid hormones play an important role during the development and functioning of the different sensory systems. In order to exert their actions, thyroid hormones need to access their target cells through transmembrane transporter proteins, among which the monocarboxylate transporter 8 (MCT8) stands out for its pathophysiological relevance. Mutations in the gene encoding for MCT8 lead to the Allan-Herndon-Dudley syndrome (AHDS), a rare disease characterised by severe neuromotor and cognitive impairments. The impact of MCT8 deficiency in the neurosensory capacity of AHDS patients is less clear, with only a few patients displaying visual and auditory impairments. In this review we aim to gather data from different animal models regarding thyroid hormone transport and action in the different neurosensory systems that could aid to identify potential neurosensorial alterations in MCT8-deficient patients.


Mental Retardation, X-Linked , Muscular Atrophy , Thyroid Hormones , Animals , Humans , Thyroid Hormones/metabolism , Mental Retardation, X-Linked/genetics , Biological Transport , Muscle Hypotonia/genetics , Monocarboxylic Acid Transporters/genetics
3.
Fluids Barriers CNS ; 20(1): 79, 2023 Nov 03.
Article En | MEDLINE | ID: mdl-37924081

BACKGROUND: The monocarboxylate transporter 8 (MCT8) plays a vital role in maintaining brain thyroid hormone homeostasis. This transmembrane transporter is expressed at the brain barriers, as the blood-brain barrier (BBB), and in neural cells, being the sole known thyroid hormone-specific transporter to date. Inactivating mutations in the MCT8 gene (SLC16A2) cause the Allan-Herndon-Dudley Syndrome (AHDS) or MCT8 deficiency, a rare X-linked disease characterized by delayed neurodevelopment and severe psychomotor disorders. The underlying pathophysiological mechanisms of AHDS remain unclear, and no effective treatments are available for the neurological symptoms of the disease. METHODS: Neurovascular unit ultrastructure was studied by means of transmission electron microscopy. BBB permeability and integrity were evaluated by immunohistochemistry, non-permeable dye infiltration assays and histological staining techniques. Brain blood-vessel density was evaluated by immunofluorescence and magnetic resonance angiography. Finally, angiogenic-related factors expression was evaluated by qRT-PCR. The studies were carried out both in an MCT8 deficient subject and Mct8/Dio2KO mice, an AHDS murine model, and their respective controls. RESULTS: Ultrastructural analysis of the BBB of Mct8/Dio2KO mice revealed significant alterations in neurovascular unit integrity and increased transcytotic flux. We also found functional alterations in the BBB permeability, as shown by an increased presence of peripheral IgG, Sodium Fluorescein and Evans Blue, along with increased brain microhemorrhages. We also observed alterations in the angiogenic process, with reduced blood vessel density in adult mice brain and altered expression of angiogenesis-related factors during brain development. Similarly, AHDS human brain samples showed increased BBB permeability to IgG and decreased blood vessel density. CONCLUSIONS: These findings identify for the first time neurovascular alterations in the MCT8-deficient brain, including a disruption of the integrity of the BBB and alterations in the neurovascular unit ultrastructure as a new pathophysiological mechanism for AHDS. These results open a new field for potential therapeutic targets for the neurological symptoms of these patients and unveils magnetic resonance angiography as a new non-invasive in vivo technique for evaluating the progression of the disease.


Mental Retardation, X-Linked , Symporters , Animals , Humans , Mice , Blood-Brain Barrier/metabolism , Immunoglobulin G , Mental Retardation, X-Linked/diagnosis , Mental Retardation, X-Linked/genetics , Mental Retardation, X-Linked/pathology , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Muscle Hypotonia/diagnosis , Muscle Hypotonia/genetics , Muscle Hypotonia/metabolism , Muscular Atrophy/diagnosis , Muscular Atrophy/genetics , Muscular Atrophy/metabolism , Symporters/genetics , Symporters/metabolism , Symporters/therapeutic use , Thyroid Hormones/metabolism , Thyroid Hormones/therapeutic use
4.
Int J Mol Sci ; 24(11)2023 Jun 01.
Article En | MEDLINE | ID: mdl-37298594

Monocarboxylate transporter 8 (MCT8) and organic anion-transporting polypeptide 1C1 (OATP1C1) are thyroid hormone (TH) transmembrane transporters relevant for the availability of TH in neural cells, crucial for their proper development and function. Mutations in MCT8 or OATP1C1 result in severe disorders with dramatic movement disability related to alterations in basal ganglia motor circuits. Mapping the expression of MCT8/OATP1C1 in those circuits is necessary to explain their involvement in motor control. We studied the distribution of both transporters in the neuronal subpopulations that configure the direct and indirect basal ganglia motor circuits using immunohistochemistry and double/multiple labeling immunofluorescence for TH transporters and neuronal biomarkers. We found their expression in the medium-sized spiny neurons of the striatum (the receptor neurons of the corticostriatal pathway) and in various types of its local microcircuitry interneurons, including the cholinergic. We also demonstrate the presence of both transporters in projection neurons of intrinsic and output nuclei of the basal ganglia, motor thalamus and nucleus basalis of Meynert, suggesting an important role of MCT8/OATP1C1 for modulating the motor system. Our findings suggest that a lack of function of these transporters in the basal ganglia circuits would significantly impact motor system modulation, leading to clinically severe movement impairment.


Basal Ganglia , Organic Anion Transporters , Symporters , Adult , Humans , Basal Ganglia/metabolism , Brain/metabolism , Interneurons/metabolism , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Neurons/metabolism , Organic Anion Transporters/metabolism , Symporters/genetics , Symporters/metabolism , Thalamus/metabolism , Thyroid Hormones/metabolism
5.
Thyroid ; 33(5): 632-640, 2023 05.
Article En | MEDLINE | ID: mdl-36792926

Background: Monocarboxylate transporter 8 (MCT8) deficiency is a rare X-linked disease where patients exhibit peripheral hyperthyroidism and cerebral hypothyroidism, which results in severe neurological impairments. These brain defects arise from a lack of thyroid hormones (TH) during critical stages of human brain development. Treatment options for MCT8-deficient patients are limited and none have been able to prevent or ameliorate effectively the neurological impairments. This study explored the effects of the TH agonist sobetirome and its CNS-selective amide prodrug, Sob-AM2, in the treatment of pregnant dams carrying fetuses lacking Mct8 and deiodinase type 2 (Mct8/Dio2 KO), as a murine model for MCT8 deficiency. Methods: Pregnant dams carrying Mct8/Dio2 KO fetuses were treated with 1 mg of sobetirome/kg body weight/day, or 0.3 mg of Sob-AM2/kg body weight/day for 7 days, starting at embryonic day 12.5 (E12.5). As controls, pregnant dams carrying wild-type and pregnant dams carrying Mct8/Dio2 KO fetuses were treated with daily subcutaneous injections of vehicle. Dams TH levels were measured by enzyme-linked immunosorbent assay (ELISA). Samples were extracted at E18.5 and the effect of treatments on the expression of triiodothyronine (T3)-dependent genes was measured in the placenta, fetal liver, and fetal cerebral cortex by real-time polymerase chain reaction. Results: Maternal sobetirome treatment led to spontaneous abortions. Sob-AM2 treatment, however, was able to cross the placental as well as the brain barriers and exert thyromimetic effects in Mct8/Dio2 KO fetal tissues. Sob-AM2 treatment did not affect the expression of the T3-target genes analyzed in the placenta, but it mediated thyromimetic effects in the fetal liver by increasing the expression of Dio1 and Dio3 genes. Interestingly, Sob-AM2 treatment increased the expression of several T3-dependent genes in the brain such as Hr, Shh, Dio3, Kcnj10, Klf9, and Faah in Mct8/Dio2 KO fetuses. Conclusions: Maternal administration of Sob-AM2 can cross the placental barrier and access the fetal tissues, including the brain, in the absence of MCT8, to exert thyromimetic actions by modulating the expression of T3-dependent genes. Therefore, Sob-AM2 has the potential to address the cerebral hypothyroidism characteristic of MCT8 deficiency from fetal stages and to prevent neurodevelopmental alterations in the MCT8-deficient fetal brain.


Hypothyroidism , Prodrugs , Symporters , Animals , Humans , Mice , Female , Pregnancy , Thyroxine/pharmacology , Thyroxine/metabolism , Symporters/genetics , Symporters/metabolism , Placenta/metabolism , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Thyroid Hormones/pharmacology , Thyroid Hormones/metabolism , Triiodothyronine/pharmacology , Triiodothyronine/metabolism , Hypothyroidism/metabolism , Fetus/metabolism , Kruppel-Like Transcription Factors/metabolism
6.
Int J Mol Sci ; 24(4)2023 Feb 06.
Article En | MEDLINE | ID: mdl-36834621

Monocarboxylate transporter 8 (MCT8) and organic anion transporter polypeptide 1C1 (OATP1C1) are thyroid hormone (TH) transmembrane transporters that play an important role in the availability of TH for neural cells, allowing their proper development and function. It is important to define which cortical cellular subpopulations express those transporters to explain why MCT8 and OATP1C1 deficiency in humans leads to dramatic alterations in the motor system. By means of immunohistochemistry and double/multiple labeling immunofluorescence in adult human and monkey motor cortices, we demonstrate the presence of both transporters in long-projection pyramidal neurons and in several types of short-projection GABAergic interneurons in both species, suggesting a critical position of these transporters for modulating the efferent motor system. MCT8 is present at the neurovascular unit, but OATP1C1 is only present in some of the large vessels. Both transporters are expressed in astrocytes. OATP1C1 was unexpectedly found, only in the human motor cortex, inside the Corpora amylacea complexes, aggregates linked to substance evacuation towards the subpial system. On the basis of our findings, we propose an etiopathogenic model that emphasizes these transporters' role in controlling excitatory/inhibitory motor cortex circuits in order to understand some of the severe motor disturbances observed in TH transporter deficiency syndromes.


Motor Cortex , Organic Anion Transporters , Symporters , Adult , Humans , Brain/metabolism , Interneurons/metabolism , Monocarboxylic Acid Transporters/metabolism , Motor Cortex/metabolism , Organic Anion Transporters/metabolism , Peptides , Pyramidal Cells/metabolism , Thyroid Hormones
7.
Thyroid ; 33(4): 501-510, 2023 04.
Article En | MEDLINE | ID: mdl-36565029

Introduction: Patients lacking functional monocarboxylate transporter 8 (MCT8), a highly specific thyroid hormone (TH) transporter, present severe psychomotor disabilities. MCT8 deficiency leads to peripheral hyperthyroidism and brain hypothyroidism, the latter due to impaired transport of TH across brain barriers. Available treatments for patients are limited and aim to overcome the limited TH transport across brain barriers. The use of TH analogues such as 3,3',5-triiodothyroacetic acid (TRIAC) that do not require MCT8 to cross the cellular membranes is considered a potential therapy for MCT8 deficiency. Previous studies have shown that systemic administration of TRIAC at therapeutic doses does not increase TRIAC content in the brain, while intracerebroventricular (ICV) administration of therapeutic doses of TRIAC increases TRIAC content in the brain but does not mediate thyromimetic effects. In view of this, we hypothesize that ICV administration of high doses of TRIAC can mediate thyromimetic effects in the brain without worsening the brain hypothyroidism or peripheral hyperthyroidism of patients. Methods: We administered 400 ng/g of body weight per day of ICV TRIAC in a mouse model of MCT8 deficiency: Mct8-/y and deiodinase 2 (Dio2)-/- double knockout mice. The effects of this treatment on TH and TRIAC levels/content in blood and tissues were determined by radioimmunoassay and effects on TH-regulated genes were assessed by real time-quantitative polymerase chain reaction in peripheral and central tissues. Results: ICV administration of high doses of TRIAC ameliorated the peripheral hyperthyroidism. In the brain, this treatment did not further aggravate brain hypothyroidism and increased TRIAC content in several brain regions; however, only moderate thyromimetic activity was observed in restricted brain areas. Conclusion: Administration of high doses of TRIAC by ICV delivery at juvenile stages in a mouse model of MCT8 deficiency is effective in normalizing peripheral hyperthyroidism but exerts minimal thyromimetic activity in the brain.


Hyperthyroidism , Hypothyroidism , Symporters , Animals , Mice , Symporters/genetics , Triiodothyronine , Thyroid Hormones , Brain , Hyperthyroidism/drug therapy , Hypothyroidism/drug therapy , Mice, Knockout , Disease Models, Animal , Monocarboxylic Acid Transporters/genetics
8.
Neurobiol Dis ; 174: 105896, 2022 Nov.
Article En | MEDLINE | ID: mdl-36243247

Inactivating mutations in the specific thyroid hormone transporter monocarboxylate transporter 8 (MCT8) lead to an X-linked rare disease named MCT8 deficiency or Allan-Herndon-Dudley Syndrome. Patients exhibit a plethora of severe endocrine and neurological alterations, with no effective treatment for the neurological symptoms. An optimal mammalian model is essential to explore the pathological mechanisms and potential therapeutic approaches. Here we have generated by CRISPR/Cas9 an avatar mouse model for MCT8 deficiency with a point mutation found in two MCT8-deficient patients (P253L mice). We have predicted by in silico studies that this mutation alters the substrate binding pocket being the probable cause for impairing thyroid hormone transport. We have characterized the phenotype of MCT8-P253L mice and found endocrine alterations similar to those described in patients and in MCT8-deficient mice. Importantly, we detected brain hypothyroidism, structural and functional neurological alterations resembling the patient's neurological impairments. Thus, the P253L mouse provides a valuable model for studying the pathophysiology of MCT8 deficiency and in the future will allow to test therapeutic alternatives such as in vivo gene therapy and pharmacological chaperone therapy to improve the neurological impairments in MCT8 deficiency.


Monocarboxylic Acid Transporters , Symporters , Animals , Mice , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Symporters/genetics , Symporters/metabolism , CRISPR-Cas Systems , Thyroid Hormones/metabolism , Disease Models, Animal , Mammals/metabolism
9.
Neurobiol Dis ; 162: 105567, 2022 01.
Article En | MEDLINE | ID: mdl-34838669

Mutations in the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) lead to profound brain alterations, including myelination impairments, in humans. We aimed to further explore the pathophysiological mechanisms underlying the MCT8 deficiency-associated myelination impairments to unravel new biomarkers and therapeutic targets. We have performed brain histological analysis on an MCT8-deficient subject and histological, ultrastructural, and magnetic resonance imaging (MRI) analysis in the brain of a mouse model of the syndrome, lacking MCT8 and enzyme deiodinase type 2 (DIO2, Mct8/Dio2 KO). We have found that the MCT8-deficient subject presents severely reduced myelin lipid and protein staining and increased proportion of small-caliber myelinated axons in detriment of large-caliber ones. Mct8/Dio2 KO mice present myelination impairments and abnormal oligodendroglial development. We conclude that the greater proportion of small-caliber axons and impairments in the oligodendroglia lineage progression arise as potential mechanisms underlying the permanent myelination defects in MCT8-deficiency. Moreover, we present the Mct8/Dio2 KO mouse model, and MRI as a non-invasive biomarker, as highly valuable tools for preclinical studies involving MCT8 deficiency. These findings contribute to the understanding of the pathological mechanisms in MCT8 deficiency and suggest new biomarkers and therapeutic targets to consider therapeutic options for the neurological defects in patients.


Monocarboxylic Acid Transporters , Symporters , Animals , Axons/metabolism , Brain/diagnostic imaging , Brain/metabolism , Humans , Mice , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Symporters/genetics , Symporters/metabolism , Thyroid Hormones/genetics , Thyroid Hormones/metabolism
10.
J Comp Neurol ; 529(1): 234-256, 2021 01.
Article En | MEDLINE | ID: mdl-30942489

The cold- and menthol-activated ion channel transient receptor potential channel subfamily M member 8 (TRPM8) is the principal detector of environmental cold in mammalian sensory nerve endings. Although it is mainly expressed in a subpopulation of peripheral sensory neurons, it has also been identified in non-neuronal tissues. Here, we show, by in situ hybridization (ISH) and by the analysis of transgenic reporter expression in two different reporter mouse strains, that TRPM8 is also expressed in the central nervous system. Although it is present at much lower levels than in peripheral sensory neurons, we found cells expressing TRPM8 in restricted areas of the brain, especially in the hypothalamus, septum, thalamic reticular nucleus, certain cortices and other limbic structures, as well as in some specific nuclei in the brainstem. Interestingly, positive fibers were also found traveling through the major limbic tracts, suggesting a role of TRPM8-expressing central neurons in multiple aspects of thermal regulation, including autonomic and behavioral thermoregulation. Additional ISH experiments in rat brain demonstrated a conserved pattern of expression of this ion channel between rodent species. We confirmed the functional activity of this channel in the mouse brain using electrophysiological patch-clamp recordings of septal neurons. These results open a new window in TRPM8 physiology, guiding further efforts to understand potential roles of this molecular sensor within the brain.


Body Temperature Regulation/physiology , Brain/metabolism , Cold Temperature , Nerve Net/metabolism , TRPM Cation Channels/biosynthesis , Animals , Cold Temperature/adverse effects , Female , Gene Expression , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Rats, Transgenic , TRPM Cation Channels/genetics
11.
Mol Metab ; 42: 101097, 2020 12.
Article En | MEDLINE | ID: mdl-33049408

OBJECTIVE: Metainflammation is a chronic low-grade inflammatory state induced by obesity and associated comorbidities, including peripheral insulin resistance. Brown adipose tissue (BAT), a therapeutic target against obesity, is an insulin target tissue sensitive to inflammation. Therefore, it is necessary to find strategies to protect BAT against the effects of inflammation in energy balance. In this study, we explored the impact of moderate sirtuin 1 (SIRT1) overexpression on insulin sensitivity and ß-adrenergic responses in BAT and brown adipocytes (BA) under pro-inflammatory conditions. METHODS: The effect of inflammation on BAT functionality was studied in obese db/db mice and lean wild-type (WT) mice or mice with moderate overexpression of SIRT1 (SIRT1Tg+) injected with a low dose of bacterial lipopolysaccharide (LPS) to mimic endotoxemia. We also conducted studies on differentiated BA (BA-WT and BA-SIRT1Tg+) exposed to a macrophage-derived pro-inflammatory conditioned medium (CM) to evaluate the protection of SIRT1 overexpression in insulin signaling and glucose uptake, mitochondrial respiration, fatty acid oxidation (FAO), and norepinephrine (NE)-mediated-modulation of uncoupling protein-1 (UCP-1) expression. RESULTS: BAT from the db/db mice was susceptible to metabolic inflammation manifested by the activation of pro-inflammatory signaling cascades, increased pro-inflammatory gene expression, tissue-specific insulin resistance, and reduced UCP-1 expression. Impairment of insulin and noradrenergic responses were also found in the lean WT mice upon LPS injection. In contrast, BAT from the mice with moderate overexpression of SIRT1 (SIRT1Tg+) was protected against LPS-induced activation of pro-inflammatory signaling, insulin resistance, and defective thermogenic-related responses upon cold exposure. Importantly, the decline in triiodothyronine (T3) levels in the circulation and intra-BAT after exposure of the WT mice to LPS and cold was markedly attenuated in the SIRT1Tg+ mice. In vitro BA experiments in the two genotypes revealed that upon differentiation with a T3-enriched medium and subsequent exposure to a macrophage-derived pro-inflammatory CM, only BA-SIRT1Tg+ fully recovered insulin and noradrenergic responses. CONCLUSIONS: This study has ascertained the benefit of the moderate overexpression of SIRT1 to confer protection against defective insulin and ß-adrenergic responses caused by BAT inflammation. Our results have potential therapeutic value in combinatorial therapies for BAT-specific thyromimetics and SIRT1 activators to combat metainflammation in this tissue.


Adipose Tissue, Brown/metabolism , Sirtuin 1/metabolism , Adipocytes/metabolism , Adipocytes/physiology , Adipocytes, Brown/metabolism , Adipocytes, Brown/physiology , Adipose Tissue/metabolism , Adipose Tissue, Brown/physiology , Animals , Energy Metabolism , Female , Gene Expression/genetics , Gene Expression Regulation/genetics , Inflammation/prevention & control , Insulin/metabolism , Insulin Resistance/physiology , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Obesity/metabolism , Receptors, Adrenergic, beta/metabolism , Sirtuin 1/genetics , Sirtuin 1/physiology , Thermogenesis/drug effects , Uncoupling Protein 1/metabolism
12.
PLoS One ; 15(7): e0236113, 2020.
Article En | MEDLINE | ID: mdl-32687511

Loss of function mutations in the gene encoding the thyroid hormone transporter monocarboxylate transporter 8 (MCT8) lead to severe neurodevelopmental defects in humans associated with a specific thyroid hormone phenotype manifesting high serum 3,5,3'-triiodothyronine (T3) and low thyroxine (T4) levels. Patients present a paradoxical state of peripheral hyperthyroidism and brain hypothyroidism, this last one most likely arising from impaired thyroid hormone transport across the brain barriers. The administration of thyroid hormones by delivery pathways that bypass the brain barriers, such as the intranasal delivery route, offers the possibility to improve the neurological defects of MCT8-deficient patients. In this study, the thyroid hormones T4 and T3 were administrated intranasally in different mouse models of MCT8 deficiency. We have found that, under the present formulation, intranasal administration of thyroid hormones does not increase the content of thyroid hormones in the brain and further raises the peripheral thyroid hormone levels. Our data suggests intranasal delivery of thyroid hormones is not a suitable therapeutic strategy for MCT8 deficiency, although alternative formulations could be considered in the future to improve the nose-to-brain transport.


Monocarboxylic Acid Transporters/deficiency , Symporters/deficiency , Thyroid Hormones/administration & dosage , Thyroid Hormones/pharmacology , Administration, Intranasal , Animals , Brain/cytology , Mice , Monocarboxylic Acid Transporters/genetics , Mutation , Signal Transduction/drug effects , Symporters/genetics , Thyroid Hormones/blood
13.
Front Neurosci ; 14: 380, 2020.
Article En | MEDLINE | ID: mdl-32410949

Allan-Herndon-Dudley syndrome is a rare disease caused by inactivating mutations in the SLC16A2 gene, which encodes the monocarboxylate transporter 8 (MCT8), a transmembrane transporter specific for thyroid hormones (T3 and T4). Lack of MCT8 function produces serious neurological disturbances, most likely due to impaired transport of thyroid hormones across brain barriers during development resulting in severe brain hypothyroidism. Patients also suffer from thyrotoxicity in other organs due to the presence of a high concentration of T3 in the serum. An effective therapeutic strategy should restore thyroid hormone serum levels (both T3 and T4) and should address MCT8 transporter deficiency in brain barriers and neural cells, to enable the access of thyroid hormones to target neural cells. Unfortunately, targeted therapeutic options are currently scarce and their effect is limited to an improvement in the thyrotoxic state, with no sign of any neurological improvement. The use of thyroid hormone analogs such as TRIAC, DITPA, or sobetirome, that do not require MCT8 to cross cell membranes and whose controlled thyromimetic activity could potentially restore the normal function of the affected organs, are being explored to improve the cerebral availability of these analogs. Other strategies aiming to restore the transport of THs through MCT8 at the brain barriers and the cellular membranes include gene replacement therapy and the use of pharmacological chaperones. The design of an appropriate therapeutic strategy in combination with an early diagnosis (at prenatal stages), will be key aspects to improve the devastating alterations present in these patients.

14.
PLoS One ; 14(12): e0226017, 2019.
Article En | MEDLINE | ID: mdl-31809508

Patients lacking the thyroid hormone (TH) transporter MCT8 present abnormal serum levels of TH: low thyroxine and high triiodothyronine. They also have severe neurodevelopmental defects resulting from cerebral hypothyroidism, most likely due to impaired TH transport across the brain barriers. The use of TH analogs, such as triiodothyroacetic acid (TRIAC), that can potentially access the brain in the absence of MCT8 and restore at least a subset of cerebral TH actions could improve the neurological defects in these patients. We hypothesized that direct administration of TRIAC into the brain by intracerebroventricular delivery to mice lacking MCT8 could bypass the restriction at the brain barriers and mediate TH action without causing hypermetabolism. We found that intracerebroventricular administration of therapeutic doses of TRIAC does not increase further plasma triiodothyronine or further decrease plasma thyroxine levels and does not alter TH content in the cerebral cortex. Although TRIAC content increased in the brain, it did not induce TH-mediated actions on selected target genes. Our data suggest that intracerebroventricular delivery of TRIAC has the ability to target the brain in the absence of MCT8 and should be further investigated to address its potential therapeutic use in MCT8 deficiency.


Cerebral Cortex/metabolism , Monocarboxylic Acid Transporters/genetics , Symporters/genetics , Thyroid Hormones/metabolism , Triiodothyronine/analogs & derivatives , Animals , Female , Infusions, Intraventricular , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocarboxylic Acid Transporters/deficiency , Symporters/deficiency , Thyroid Hormones/chemistry , Thyroxine/blood , Triiodothyronine/administration & dosage , Triiodothyronine/blood
15.
Thyroid ; 29(11): 1669-1682, 2019 11.
Article En | MEDLINE | ID: mdl-31359845

Background: Mutations in the thyroid hormone (TH) transporter monocarboxylate transporter 8 (MCT8) lead to peripheral hyperthyroidism and profound psychomotor alterations in humans. Mice lacking Mct8 present peripheral hyperthyroidism but no gross neurological abnormalities due to brain compensatory mechanisms involving the enzyme deiodinase type 2 (Dio2). Methods: Here we have analyzed the endocrine and neurologic phenotype of mice lacking both Mct8 and Dio2 at three and six months of age. Thyroxine (T4) and 3,5,3' triiodothyronine (T3) levels/content were measured by specific radioimmunoassays; motor skill performance was evaluated by the footprint, rotarod, four limb hanging wire, and balance beam tests; and brain histological analysis was performed by immunostaining for neurofilament and parvalbumin. Results: We have found that this mouse model presents peripheral hyperthyroidism and brain hypothyroidism. Interestingly, the severity of the brain hypothyroidism seems permanent and varies across regions, with the striatum being a particularly affected area. We have also found brain alterations at the histological level compatible with TH deficiency and impaired motor skills. Conclusions: These findings indicate the potential of Mct8/Dio2-deficient mice to represent a model for human MCT8 deficiency, to understand the mechanisms underlying its pathophysiology, and ultimately design therapeutic interventions for human patients.


Brain Diseases/genetics , Iodide Peroxidase/genetics , Monocarboxylic Acid Transporters/genetics , Motor Skills , Nervous System Diseases/genetics , Symporters/genetics , Thyroid Hormones/metabolism , Animals , Brain Diseases/pathology , Brain Diseases/psychology , Disease Models, Animal , Female , Iodide Peroxidase/deficiency , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocarboxylic Acid Transporters/deficiency , Psychomotor Performance , Symporters/deficiency , Thyroid Gland/pathology , Thyroxine/blood , Triiodothyronine/blood , Iodothyronine Deiodinase Type II
16.
Brain Struct Funct ; 224(6): 2103-2119, 2019 Jul.
Article En | MEDLINE | ID: mdl-31165302

Thyroid hormones (TH) are crucial for brain development; their deficiency during neurodevelopment impairs neural cell differentiation and causes irreversible neurological alterations. Understanding TH action, and in particular the mechanisms regulating TH availability in the prenatal human brain is essential to design therapeutic strategies for neurological diseases due to impaired TH signaling during neurodevelopment. We aimed at the identification of cells involved in the regulation of TH availability in the human brain at fetal stages. To this end, we studied the distribution of the TH transporters monocarboxylate transporter 8 (MCT8) and organic anion-transporting polypeptide 1C1 (OATP1C1), as well as the TH-metabolizing enzymes types 2 and 3 deiodinases (DIO2 and DIO3). Paraffin-embedded human brain sections obtained from necropsies of thirteen fetuses from 14 to 38 gestational weeks were analyzed by immunohistochemistry and in situ hybridization. We found these proteins localized along radial glial cells, in brain barriers, in Cajal-Retzius cells, in migrating fibers of the brainstem and in some neurons and glial cells with particular and complex spatiotemporal patterns. Our findings point to an important role of radial glia in controlling TH delivery and metabolism and suggest two additional novel pathways for TH availability in the prenatal human brain: the outer, and the inner cerebrospinal fluid-brain barriers. Based on our data we propose a model of TH availability for neural cells in the human prenatal brain in which several cell types have the ability to autonomously control the required TH content.


Astrocytes/metabolism , Ependymoglial Cells/metabolism , Monocarboxylic Acid Transporters/metabolism , Thyroid Hormones/metabolism , Humans , Neurons/metabolism , Oligodendroglia/metabolism , Organic Anion Transporters/metabolism , RNA, Messenger/metabolism
17.
Thyroid ; 28(9): 1211-1220, 2018 09.
Article En | MEDLINE | ID: mdl-29845892

BACKGROUND: Loss of function mutations in the thyroid hormone (TH)-specific cell membrane transporter, the monocarboxylate transporter 8 (MCT8), lead to profound psychomotor retardation and abnormal TH serum levels, with low thyroxine (T4) and high triiodothyronine (T3). Several studies point to impaired TH transport across brain barriers as a crucial pathophysiological mechanism resulting in cerebral hypothyroidism. Treatment options for MCT8-deficient patients are limited and are focused on overcoming the brain barriers. The aim of this study was to evaluate the ability of the TH analog sobetirome and its prodrug Sob-AM2 to access the brain and exert thyromimetic actions in the absence of Mct8. METHODS: Juvenile wild-type (Wt) mice and mice lacking Mct8 and deiodinase type 2 (Mct8/Dio2KO) were treated systemically with daily injections of vehicle, 1 mg of sobetirome/kg body weight/day, or 0.3 mg of Sob-AM2/kg body weight/day for seven days. Sobetirome content was measured using liquid chromatography-tandem mass spectrometry, and T4 and T3 levels by specific radioimmunoassays. The effect of sobetirome treatment in the expression of T3-dependent genes was measured in the heart, liver, and cerebral cortex by real-time polymerase chain reaction. RESULTS: Sob-AM2 treatment in Mct8/Dio2KO animals led to 1.8-fold more sobetirome content in the brain and 2.5-fold less in plasma in comparison to the treatment with the parent drug sobetirome. Both sobetirome and Sob-AM2 treatments in Mct8/Dio2KO mice greatly decreased plasma T4 and T3 levels. Dio1 and Ucp2 gene expression was altered in the liver of Mct8/Dio2KO mice and was not affected by the treatments. In the heart, Hcn2 but not Atp2a2 expression was increased after treatment with the analogs. Interestingly, both sobetirome and Sob-AM2 treatments increased the expression of several T3-dependent genes in the brain such as Hr, Abcd2, Mme, and Flywch2 in Mct8/Dio2KO mice. CONCLUSIONS: Sobetirome and its amide prodrug Sob-AM2 can access the brain in the absence of Mct8 and exert thyromimetic actions modulating the expression of T3-dependent genes. At the peripheral level, the administration of these TH analogs results in the depletion of circulating T4 and T3. Therefore, sobetirome and Sob-AM2 have the potential to address the cerebral hypothyroidism and the peripheral hyperthyroidism characteristic of MCT8 deficiency.


Acetates/pharmacology , Brain/drug effects , Membrane Transport Proteins/genetics , Phenols/pharmacology , Prodrugs/pharmacology , Animals , Membrane Transport Proteins/metabolism , Mice , Mice, Knockout , Monocarboxylic Acid Transporters , Symporters , Thyroxine/blood , Triiodothyronine/blood , Uncoupling Protein 2/genetics , Uncoupling Protein 2/metabolism
18.
Cereb Cortex ; 28(5): 1783-1793, 2018 05 01.
Article En | MEDLINE | ID: mdl-28407057

Thyroid hormones (THs, T4 and the transcriptionally active hormone T3) play an essential role in neurodevelopment; however, the mechanisms underlying T3 brain delivery during mice fetal development are not well known. This work has explored the sources of brain T3 during mice fetal development using biochemical, anatomical, and molecular approaches. The findings revealed that during late gestation, a large amount of fetal brain T4 is of maternal origin. Also, in the developing mouse brain, fetal T3 content is regulated through the conversion of T4 into T3 by type-2 deiodinase (D2) activity, which is present from earlier prenatal stages. Additionally, D2 activity was found to be essential to mediate expression of T3-dependent genes in the cerebral cortex, and also necessary to generate the transient cerebral cortex hyperthyroidism present in mice lacking the TH transporter Monocarboxylate transporter 8. Notably, the gene encoding for D2 (Dio2) was mainly expressed at the blood-cerebrospinal fluid barrier (BCSFB). Overall, these data signify that T4 deiodinated by D2 may be the only source of T3 during neocortical development. We therefore propose that D2 activity at the BCSFB converts the T4 transported across the choroid plexus into T3, thus supplying the brain with active hormone to maintain TH homeostasis.


Cerebral Cortex , Embryo, Mammalian/drug effects , Embryo, Mammalian/metabolism , Gene Expression Regulation, Developmental/physiology , Thyroid Hormones/metabolism , Age Factors , Animals , Animals, Newborn , Body Weight/physiology , Cerebral Cortex/embryology , Cerebral Cortex/growth & development , Cerebral Cortex/metabolism , Female , Gestational Age , Iodide Peroxidase/deficiency , Iodide Peroxidase/genetics , Iodine Isotopes/metabolism , Liver/embryology , Liver/growth & development , Liver/metabolism , Membrane Transport Proteins/deficiency , Membrane Transport Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Monocarboxylic Acid Transporters , Pregnancy , RNA, Messenger/metabolism , Symporters , Thyroid Hormones/pharmacology , Tyrosine 3-Monooxygenase/metabolism , Iodothyronine Deiodinase Type II
19.
Front Cell Neurosci ; 11: 240, 2017.
Article En | MEDLINE | ID: mdl-28855863

Thyroid hormones (THs) play an essential role in the development of all vertebrates; in particular adequate TH content is crucial for proper neurodevelopment. TH availability and action in the brain are precisely regulated by several mechanisms, including the secretion of THs by the thyroid gland, the transport of THs to the brain and neural cells, THs activation and inactivation by the metabolic enzymes deiodinases and, in the fetus, transplacental passage of maternal THs. Although these mechanisms have been extensively studied in rats, in the last decade, models of genetically modified mice have been more frequently used to understand the role of the main proteins involved in TH signaling in health and disease. Despite this, there is little knowledge about the mechanisms underlying THs availability in the mouse brain. This mini-review article gathers information from findings in rats, and the latest findings in mice regarding the ontogeny of TH action and the sources of THs to the brain, with special focus on neurodevelopmental stages. Unraveling TH economy and action in the mouse brain may help to better understand the physiology and pathophysiology of TH signaling in brain and may contribute to addressing the neurological alterations due to hypo and hyperthyroidism and TH resistance syndromes.

20.
Psychoneuroendocrinology ; 84: 51-60, 2017 Oct.
Article En | MEDLINE | ID: mdl-28654773

A euthyroid state in the brain is crucial for its adequate development and function. Impairments in thyroid hormones (THs; T3 or 3,5,3'-triiodothyronine and T4 or thyroxine) levels and availability in brain can lead to neurological alterations and to psychiatric disorders, particularly mood disorders. The thyroid gland synthetizes mainly T4, which is secreted to circulating blood, however, most actions of THs are mediated by T3, the transcriptionally active form. In the brain, intracellular concentrations of T3 are modulated by the activity of type 2 (D2) and type 3 (D3) deiodinases. In the present work, we evaluated learning and memory capabilities and anxiety-like behavior at adult stages in mice lacking D2 (D2KO) and we analyzed the impact of D2-deficiency on TH content and on the expression of T3-dependent genes in the amygdala and the hippocampus. We found that D2KO mice do not present impairments in spatial learning and memory, but they display emotional alterations with increased anxiety-like behavior as well as enhanced auditory-cued fear memory and spontaneous recovery of fear memory following extinction. D2KO mice also presented reduced T3 content in the hippocampus and decreased expression of the T3-dependent gene Dio3 in the amygdala suggesting a hypothyroid status in this structure. We propose that the emotional dysfunctions found in D2KO mice can arise from the reduced T3 content in their brain, which consequently leads to alterations in gene expression with functional consequences. We found a downregulation in the gene encoding for the calcium-binding protein calretinin (Calb2) in the amygdala of D2KO mice that could affect the GABAergic transmission. The current findings in D2KO mice can provide insight into emotional disorders present in humans with DIO2 polymorphisms.


Anxiety/metabolism , Iodide Peroxidase/deficiency , Triiodothyronine/metabolism , Amygdala/physiopathology , Animals , Anxiety/genetics , Anxiety Disorders/metabolism , Calbindin 2/genetics , Calbindin 2/metabolism , Calcium-Binding Proteins/genetics , Fear , Female , Gene Expression , Hippocampus/physiopathology , Iodide Peroxidase/genetics , Learning/physiology , Male , Memory/physiology , Mice , Mice, Knockout , Thyroid Hormones/metabolism , Thyroxine/blood , Thyroxine/metabolism , Triiodothyronine/blood
...